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ABSTRACT 
 
The waste heat driven vapor jet ejector cooling cycle is a very promising approach to produce ‘free’ cooling by 
utilizing low-grade energy sources. The mechanism behind ejector-based waste heat cooling is very different from 
absorption or adsorption cooling technologies that are also aimed at producing heat driven cooling. The ejector 
cooling system is actually more closely related to vapor compression technology, in which an ejector, a waste heat 
source, and a liquid pump are used to replace the vapor compressor. Despite the fact that ejectors were first used in 
refrigeration systems almost 100 years ago, commercially available waste heat driven ejector cooling systems do not 
exist at this point. However, this intriguing technology continues to draw significant attention from academia, 
Government laboratories, and research departments in industry. Rising energy costs and the desire to utilize 
otherwise unused low-grade energy that becomes available as a byproduct in many processes, such as power 
generation, justify increased research efforts on this promising approach. This paper presents both numerical and 
experimental research carried out with vapor jet ejector cooling cycles. A military-style, trailer-mounted technology 
demonstrator was designed, built, and evaluated. The concept consists of a diesel-electric generator with a nominal 
electric power output of 15 kW. A conventional, transcritical R744 vapor compression Environmental Control Unit 
(ECU) is powered by the generator, thereby loading the generator’s combustion engine. Waste heat from the 
generator is extracted at two different temperature levels, namely from the generator’s exhaust and engine coolant 
streams. The extracted heat is transferred to the R134a working fluid inside the vapor jet ejector ECU where it 
ultimately produces the desired cooling effect. Measurements show that a cooling effect of 1.54 kW can be produced 
with electrical input of approximately 0.16 kW. It is demonstrated that the total cooling output per liter fuel spent is 
improved by up to 11 % by operating the ejector system in addition to the conventional vapor compression system.  
 

1. INTRODUCTION 
 

Many industrial processes produce large amounts of excessive heat that is not utilized. The waste heat driven ejector 
cooling cycle is a very promising approach to utilize low-grade energy for cooling purposes. Much research has 
been carried out in order to study and improve the vapor jet ejector cooling system (ECS). The main focus of the 
research conducted are the refrigerants used, the operating conditions, and the characteristic dimensions of the 
ejector. The main requirements for the working fluid of a vapor jet ejector cooling cycle are its performance as well 
as its low environmental impact. Roman and Hernandez (2011) compared various refrigerants on their feasibility 
and performance as a working fluid in an ECS. In their numerical investigation, propane was found to give best 
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Possible shock waves can cause a sharp decrease in velocity and a significant pressure rise in the mixing section. In 
the subsequent diffuser, the remaining kinetic energy is reduced, resulting in a further pressure increase. 
Downstream of the ejector’s diffuser, three air-cooled aluminum microchannel condenser panels are utilized to 
reject heat to ambient and to liquefy the refrigerant. The condensers are circuited in parallel on the refrigerant-side 
and configured in a cross-counterflow arrangement. Downstream of the condensers, an accumulator is installed to 
store excess liquid refrigerant. The refrigerant downstream of the accumulator is split, with the larger amount being 
fed back to the pump. The remaining portion of the liquid refrigerant is expanded by a thermostatic expansion valve 
into the aluminum microchannel evaporator. On the air-side, the evaporator of the ECS is installed in series to the 
evaporator of the VCS. Major benefit of this configuration is the fact that no additional air moving equipment is 
needed. As the evaporator of the ECS typically operates at higher saturation temperatures, it is located upstream of 
the evaporator of the VCS. Hence, the air is pre-cooled by the ECS prior to entering the evaporator of the VCS and 
thus, improving the total cooling output. 
 
Suggestions for ejector dimensions are available in the open literature e.g. ASHRAE (1983) and Selvaraju and Mani 
(2006). However, an optimum set-up for a particular system still heavily relies on experimental investigations. 
Therefore, a modular ejector was designed and fabricated as shown in Figure 3a. The ejector components are 
situated in a steel tube with flanges. Sealing of the individual ejector components is realized by means of PTFE 
rings. Characteristic dimensions of the ejector are schematically illustrated in Figure 3b. Certain dimensions were 
kept constant throughout all tests conducted such as throat diameter, length of the motive nozzle diverging and 
converging section as well as the length of the diffuser. Furthermore, the angles of the motive nozzle divergent 
section, suction nozzle, and diffuser were kept constant for all tests. Diverging angle of the motive nozzle as well as 
the mixing section diameter were varied and the effects on the ejector as well as system performance were 
investigated. Length of the mixing section was adjusted to the corresponding mixing section diameter such that the 
mixing ratio (lms/dms) was maintained at 8.37. 
 
2.3 Experimental Procedure and Instrumentation 
Air flow rates across the evaporator and the condenser of the ECS were kept constant. Air inlet temperatures to the 
evaporator and condensers were adjusted by means of electrical air heaters. Refrigerant superheat at the evaporator 
exit of the vapor jet ejector cooling system was controlled to be 5 K throughout all tests conducted. The motive mass 
flow rate was adjusted by varying the speed of the refrigerant pump. As the tests focused on the evaluation of the 
ECS, the VCS was not operated. Instead, the load on the diesel-electric generator was simulated by using electrical 
resistance heaters. Electrical output of the diesel-electric generator was kept constant at 10.5 kW, resulting in 
constant coolant and exhaust temperatures. 
 
Measurements were carried out on the refrigerant-side. Copper-constantan immersion thermocouples (T-type) were 
used to determine temperatures at the inlet and outlet of each component with an accuracy of ± 0.5 K. Absolute 
refrigerant pressures were measured by means of piezoelectric pressure transducers with an uncertainty of 0.1 % of 
the full scale. Pressure drop across heat exchangers was estimated by using piezoelectric differential pressure 
transducers with an accuracy of 0.25 % of the full scale. Coriolis-effect based mass flow sensors were utilized to 
quantify the refrigerant mass flow rate of the motive as well as the suction mass flow rate. The manufacturer’s lists 
an accuracy of ± 0.1 % of the full scale for both sensors.  
 

a)   b)  
 
Figure 3: a) 3-D CAD cut-away view of the modular ejector; b) schematic of ejector with characteristic dimensions  
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Power consumption of the refrigerant pump was measured by means of a watt transducer having an accuracy of ± 
0.2 % of the full scale. Additionally, thermocouple grids were installed at the inlet and outlet of both evaporators in 
order to investigate the refrigerant distribution inside the heat exchangers. The instrumentation was calibrated in the 
range of operation. 

 
3. RESULTS AND DISCUSSION 

 
The performance of the ejector is evaluated using at the mass entrainment ratio and the suction pressure ratio as 
characterized by Elbel and Hrnjak (2006). The mass entrainment ratio relates the motive mass flow rate to the 
suction mass flow rate as specified in equation (1). The suction pressure ratio described in equation (2) relates the 
diffuser exit pressure to the inlet pressure at the suction nozzle. 
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The performance of the ECS can be described by a mechanical COP and a thermal COP (Petrenko et. al., 2011). The 
mechanical COP (COPmech) compares the cooling output of the ECS to the mechanical work of the pump, whereas 
the thermal COP (COPtherm) relates the cooling output to the amount of waste heat input as described in equations (3) 
and (4), respectively. It should be noted that the amount of heat added to the system by the pump is neglected in the 
thermal COP. 
 

 

P

cool
mech W

QCOP &

&
= (3)  

 

G

cool
therm Q

QCOP &

&
= (4)  

 
The motive nozzle of the ejector has a convergent–divergent shape. According to ASHRAE (1983), values of 10˚ to 
12˚ for the angle of the diverging section are most common for steam jet refrigeration, but can range from 8˚ to 15˚. 
In this study, diverging angles of 8˚, 12˚, and 20˚ were investigated. Experimental results of cooling capacity for 
various ejector motive nozzle diverging angles are shown in Figure 4a. A very similar trend can be observed for all 
configurations. The lowest cooling capacity is achieved with the lowest motive mass flow rate. Due to the relatively 
high inlet temperatures and associated lower densities of the motive vapor flow, velocities inside the ejector are 
higher. Thus, increased pressure losses are encountered, resulting in reduced entrainment of suction flow. An 
increase in motive mass flow rate results in increased motive pressure, whereas the inlet temperature of the motive 
flow is reduced and thus, the cooling capacity increases. Highest cooling capacity of 1.54 kW was observed with a 
diverging angle of 12˚ and a motive mass flow rate of 30 g/s. A diverging angle of 8˚ seems to be too small and 
results in pressure losses as the expansion of the motive vapor is restricted. A diverging angle of 20˚ results in the 
lowest cooling capacity.  
 
Very similar trends can be seen in the mass entrainment ratio and suction pressure ratio as presented in Figure 4b. 
The ejector configuration with 12˚ diverging angle results in mass entrainment ratios of up to 0.32 with a 
corresponding suction pressure ratio of approximately 1.9. Significantly lower values are achieved with motive 
nozzle diverging angles of 8˚ and 12˚. 
 
Experimental results for COPtherm are presented in Figure 5a. Increased motive mass flow rate results in an increased 
amount of heat recovered. However, the increase in cooling capacity is greater than the increase in waste heat 
recovered. Hence, COPtherm increases with increasing motive mass flow rate.  
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a)   b)  
 
Figure 4: a) Experimental results of cooling capacity for various motive nozzle diverging angles as a function of the 
motive mass flow rate; b) experimental results of mass entrainment ratio for various motive nozzle diverging angles 

as a function of the suction pressure ratio 
 
The reverse trend can be seen in Figure 5b, where the COPmech decreases with increasing motive mass flow rate. The 
reason for this is a greater increase in pump power consumption than the increase in cooling capacity. As a result, 
the highest COPmech of 11.4 is achieved at a condition where the cooling capacity for a given ejector configuration is 
the lowest. 
 
A variation of mixing chamber diameter dms with constant ejector throat diameter dt results in a different ejector area 
ratio (EAR) [where EAR = dms

2/dt
2]. Generally, ejectors with higher EARs yield larger entrainment ratios, whereas 

smaller EAR values suffer from increased losses caused by friction (Selvaraju and Mani, 2006). 
 
Figure 6a presents results of the cooling capacity for different EARs as a function of the motive mass flow rate. At 
relatively low motive mass flow rates, the configuration having an EAR of 7.22 shows significantly higher cooling 
capacity than the one with an EAR of 6.25. In this condition, the motive nozzle inlet temperatures are relatively 
high, resulting in low densities. Thus, the friction losses in the 4 mm mixing section are higher, which reduces the 
mass entrainment ratio as shown in Figure 6b. At increased motive mass flow rates the performance of the 
configuration with EAR 6.25 and 7.22 are very similar. An EAR of 9.77 seems to be too large with no measurable 
cooling capacity at a motive mass flow rate of 20 g/s. Even at increased motive mass flow rates of 25 g/s and 30 g/s 
almost no suction flow is entrained which leads to a very low cooling capacity for this configuration. 
 

a)   b)  
 

Figure 5: Experimental results of a) COPtherm and b) COPmech for various motive nozzle divergent angles as a 
function of the motive mass flow rates 
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a) b)  
 

Figure 6: a) Experimental results of cooling capacity for different ejector area ratios as a function of the motive 
mass flow rate; b) experimental results of the mass entrainment ratio for different ejector area ratios as a function of 

the suction pressure ratio 
 
Results of COPtherm and COPmech for different EARs are presented in Figure 7a and Figure 7b, respectively. Trends 
are very similar to those observed in the corresponding cooling capacity and mass entrainment ratio for a given 
ejector configuration. A motive mass flow rate of 20 g/s and an EAR of 7.22 yielded the highest COPmech. Values of 
COPtherm and COPmech become almost identical at increased motive mass flow rates, with the smaller EAR of 6.25 
having slightly better COPtherm and COPmech with a motive mass flow rate of 30 g/s. The EAR of 9.77 results in 
significantly lower COP values due to a low mass entrainment ratio. 
 
Performance evaluation of the ECS was carried out according to U.S. Army standard test conditions. Conditions D0, 
D0.5 and D1 denote the air inlet temperatures to both evaporator and condenser of 20 ˚C, 25 ˚C, and 32.2 ˚C, 
respectively. The performance of the VCS was independently evaluated in an earlier study. However, it should be 
noted that performance numbers for the conventional system in the conditions D0 and D0.5 are extrapolated, as only 
experimental performance data for higher ambient temperatures were readily available. As shown in Figure 8a, the 
cooling capacity of the VCS increases at higher ambient temperature conditions to a maximum of approximately 
12 kW at condition D1. The cooling capacity of the ECS decreases with increased ambient temperature. An elevated 
condenser air inlet temperature increases the condensing pressure. Thus, the driving pressure ratio between 
generator pressure and condensing pressure is reduced, resulting in less energy available to entrain suction flow 
from the evaporator. Cooling capacities realized with the ECS ranged from a maximum of 1.54 kW at condition D0 
to 0.86 kW at condition D1. 
 

a)  b)  
 

Figure 7: Experimental results of a) COPtherm and b) COPmech for different ejector area ratios as a function of the 
motive mass flow rat 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

18 20 22 24 26 28 30 32

Co
ol
in
g c

ap
ac
ity

 [k
W
]

Motive mass flow rate [g/s]

Tambient = 20˚C; ∆Tsup = 5K

Diameter mixing chamber dms = 4.3 mm 
Ejector area ratio EAR = 7.22

dms = 5 mm 
EAR = 9.77

dms = 4.0 mm 
EAR = 6.25

Motive nozzle:α = 8˚; dt = 1.6 mm

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1.5 1.6 1.7 1.8 1.9 2.0

M
as
s e

nt
ra
in
m
en

t r
at
io
 [‐
]

Suction pressure ratio [‐]

Tambient = 20˚C; ∆Tsup = 5K

Diameter mixing chamber dms = 4.3 mm 
Ejector area ratio EAR = 7.22

dms = 5 mm 
EAR = 9.77

dms = 4 mm 
EAR = 6.25

Motive nozzle:α = 8˚; dt = 1.6 mm

0

0.1

0.2

0.3

18 20 22 24 26 28 30 32

CO
P t

he
rm
[‐
]

Motive mass flow rate [g/s]

Tambient = 20˚C; ∆Tsup = 5K

Diameter mixing chamber dms = 4.3 mm 
Ejector area ratio EAR = 7.22

dms = 5 mm 
EAR = 9.77

dms = 4 mm 
EAR = 6.25

Motive nozzle:α = 8˚; dt = 1.6 mm

0

2

4

6

8

10

12

18 20 22 24 26 28 30 32

CO
P m

ec
h
[‐
]

Motive mass flow rate [g/s]

Tambient = 20˚C; ∆Tsup = 5K

Diameter mixing chamber dms = 4.3 mm 
Ejector area ratio EAR = 7.22

dms = 5 mm 
EAR = 9.77

dms = 4 mm 
EAR = 6.25

Motive nozzle:α = 8˚; dt = 1.6 mm



 

a)
 
Figure 8: 

 
Trends of 
the COPme
Also, COP
capacity.  
 
In order t
compared 
presents th
systems op
manufactu
improved f
ambient te
The calcul
 

 
In this stud
Waste hea
dimensions

Internation

Comparison o

COPmech are th
ech of the VCS
Pmech of the EC

to demonstrate
and the effici

he cooling capa
perating simult
rer of the dies
from 4.76 kWh

emperature con
ated improvem

F

dy, a waste hea
t from a diese
s of the ejector

al Refrigeratio

f a) cooling ca
at

he same for bot
S decreases as 
CS is reduced

e the overall 
iency in terms
acity per unit o
taneously. Num
sel-electric gen
h/l to 5.28 kWh
nditions, the im
ment at the cond

Figure 9: Syste

at driven vapor
l-electric gene
r were varied. A

on and Air Con

apacity and b) C
t various ambie

th systems as p
the compresso

d at higher am

system improv
s of fuel consu
of volumetric fu
mbers are base
nerator (Army,
h/l at condition

mprovement by
dition D0.5 is 6

em comparison

4. C

r jet ejector coo
erator was utili
A motive nozz

nditioning Conf

 b) 

COPmech betwe
ent temperature

presented in Fi
or power consu

mbient tempera

vement by the
umption by th
uel consumptio
ed on a fuel co
, 1992). The t
n D0, which co
y the ECS dec
6.6% and 4.6%

 
n of cooling out

 
CONCLUSI

oling system w
ized to drive th
zle converging 

ference at Purd

een the conven
e conditions 

igure 8b. Desp
umption increa

ature condition

e ECS, the p
he diesel-electr
on for only the
onsumption of 
total cooling c
orresponds to a
creases due to 

% at the conditi

tput per fuel co

IONS 

was designed, b
he vapor jet ej
angle of 12˚ y

due, July 16-19

ntional and vap

pite an increasi
ases at higher 

ns because of 

performances o
tric generator 
e VCS operatin
f 0.378 l/kWhel
capacity per lit
an improvemen
the reduction 

ion D1, respect

 

onsumption 

built, and exper
jector cooling 
yielded a maxim

2164, P

9, 2012 

or jet ejector s

ing cooling cap
ambient cond
the reduced c

of both system
calculated. Fig

ng as well as fo
l, as specified 
ter fuel consum
nt of 11%. At 
in cooling cap

tively.  

rimentally eval
cycle. Charact
mum performa

Page 8 

 

ystem 

pacity, 
ditions. 
cooling 

ms are 
gure 9 
or both 
by the 
med is 
higher 
pacity. 

luated. 
teristic 
ance in 



2164, Page 9 
 

International Refrigeration and Air Conditioning Conference at Purdue, July 16-19, 2012 

terms of mass entrainment and cooling capacity. Moreover, a mixing section diameter of 4.3 mm resulted in best 
results in comparison to a mixing section diameter of 4.0 mm and 5.0 mm. Furthermore, the system performance 
was evaluated at various ambient temperature conditions. As expected, the system performance decreased at 
elevated ambient temperatures due to a reduced cooling output. Maximum cooling capacity of 1.54 kW was 
achieved with an electric input only 0.16 kW, resulting in a COPmech of 9.63. As the cooling output of the ECS was 
employed to improve the performance of the VCS, fuel consumption of the diesel-electric generator was calculated 
for only the vapor compression cycle operating in comparison to both systems operating. It was demonstrated that 
the total cooling output per liter fuel spent can be improved by up to 11%.  
 

NOMENCLATURE 
 

3-D three dimensional   
CAD computer aided design   
COP coefficient of performance (-)  
d diameter (mm)  
EAR ejector area ratio (-)  
ECU environmental control unit  
ECS ejector cooling system 
HFC hydrofluorocarbon   
l length (mm)  
m mass flow rate  (kg/s)  
p pressure (MPa)  
PTFE polytetrafluoroethylene   
Q cooling capacity (kW)  
VCS vapor compression system   
W power consumption (kW)  
Subscripts 
cool cooling 
div diverging 
diff diffuser 
el electric 

G generator 
in inlet 
mech mechanical 
ms mixing section 
out outlet 
P pump 
suc suction 
sup superheat 
t throat 
therm thermal 
Greek letters 
α diverging angle  (˚) 
β converging angle (˚) 
γ suction nozzle angle (˚) 
δ diffuser angle (˚) 
ΔT temperature difference (K) 
Π suction pressure ratio (-) 
Φ mass entrainment ratio (-) 
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